Perspector of ABC and OaObOc is: Q = a/(a^6+a^5 (b+c)-3 a^4 (b^2+b c+c^2)-3 a^3 (b^3+b^2 c+b c^2+c^3)+2 a^2 (b^4-b^2 c^2+c^4)+2 a (b^5+b^4 c-b^3 c^2-b^2 c^3+b c^4+c^5)+3 b c (b^2-c^2)^2) : : Q lies on lines X(i)X(j) for these {i, j}: {21,3292}, {187,1172}, {314,6390},{468,1896} (6 - 9 - 13) - search numbers of Q: (3.65633649901543, 5.10568996316111, -1.58158387674966).Angel Montesdeoca, 23.02.2021
Let H=X(4)-Orthocenter of ABC. A 1 B 1 C 1 cevian triangle of H. B1 A , C1 A are reflections of B1, C1 on A. L A , line through B1 A , C1...
Perspector of ABC and OaObOc is:
ReplyDeleteQ = a/(a^6+a^5 (b+c)-3 a^4 (b^2+b c+c^2)-3 a^3 (b^3+b^2 c+b c^2+c^3)+2 a^2 (b^4-b^2 c^2+c^4)+2 a (b^5+b^4 c-b^3 c^2-b^2 c^3+b c^4+c^5)+3 b c (b^2-c^2)^2) : :
Q lies on lines X(i)X(j) for these {i, j}: {21,3292}, {187,1172}, {314,6390},{468,1896}
(6 - 9 - 13) - search numbers of Q: (3.65633649901543, 5.10568996316111, -1.58158387674966).
Angel Montesdeoca, 23.02.2021