Monday, December 27, 2021

1751. A Locus for K002-Thomson Cubic

1 comment:

  1. A similar locus for K007-Lucas Cubic:
    Let $L=X_{20}$ -Delongchamp's point of $ABC$ and $P$ be a point on K007-Lucas Cubic of $ABC$. $DEF$-Cevian triangle of $P$.
    Perpendicular to $LP$ at $P$ intersects the $BC$ and $EF$ at $X,Y$ respectively.\\

    *$\frac{XP}{PY}=2$ \\

    ReplyDelete

1988. Circumcenters On Euler Line

  Let ABC be a triangle with P, Q are two points on Euler line of ABC. A',B',C' are inverse images of A,B,C through circle diame...