A similar locus for K007-Lucas Cubic:Let $L=X_{20}$ -Delongchamp's point of $ABC$ and $P$ be a point on K007-Lucas Cubic of $ABC$. $DEF$-Cevian triangle of $P$.Perpendicular to $LP$ at $P$ intersects the $BC$ and $EF$ at $X,Y$ respectively.\\ *$\frac{XP}{PY}=2$ \\
Let ABC be a triangle with P, Q are two points on Euler line of ABC. A',B',C' are inverse images of A,B,C through circle diame...
A similar locus for K007-Lucas Cubic:
ReplyDeleteLet $L=X_{20}$ -Delongchamp's point of $ABC$ and $P$ be a point on K007-Lucas Cubic of $ABC$. $DEF$-Cevian triangle of $P$.
Perpendicular to $LP$ at $P$ intersects the $BC$ and $EF$ at $X,Y$ respectively.\\
*$\frac{XP}{PY}=2$ \\