Thursday, January 27, 2022

1775. Concurrent Euler Lines

2 comments:

  1. Locus is linf+circumcircle + q4-a quartic. Equation of the quartic in terms of xyz: a^2 b^2 c^4 x^3 y + b^4 c^4 x^3 y - b^2 c^6 x^3 y - a^4 c^4 x y^3 -a^2 b^2 c^4 x y^3 + a^2 c^6 x y^3 - a^2 b^4 c^2 x^3 z +b^6 c^2 x^3 z - b^4 c^4 x^3 z - a^6 c^2 y^3 z + a^4 b^2 c^2 y^3 z +a^4 c^4 y^3 z + a^4 b^4 x z^3 - a^2 b^6 x z^3 + a^2 b^4 c^2 x z^3 +a^6 b^2 y z^3 - a^4 b^4 y z^3 - a^4 b^2 c^2 y z^3=0

    Isodynamic points X(15) and X(16) also lie on the quartic. But ın these cases such triangles are equilateral and have no Euler lines. (Degenerate case).

    ReplyDelete

1987. Circumcenter On Euler Line

 Let H=X(4)-Orthocenter of ABC. A 1 B 1 C 1 cevian triangle of H. B1 A , C1 A are reflections of B1, C1 on A. L A , line through B1 A , C1...