Thursday, January 27, 2022

1775. Concurrent Euler Lines

2 comments:

  1. Locus is linf+circumcircle + q4-a quartic. Equation of the quartic in terms of xyz: a^2 b^2 c^4 x^3 y + b^4 c^4 x^3 y - b^2 c^6 x^3 y - a^4 c^4 x y^3 -a^2 b^2 c^4 x y^3 + a^2 c^6 x y^3 - a^2 b^4 c^2 x^3 z +b^6 c^2 x^3 z - b^4 c^4 x^3 z - a^6 c^2 y^3 z + a^4 b^2 c^2 y^3 z +a^4 c^4 y^3 z + a^4 b^4 x z^3 - a^2 b^6 x z^3 + a^2 b^4 c^2 x z^3 +a^6 b^2 y z^3 - a^4 b^4 y z^3 - a^4 b^2 c^2 y z^3=0

    Isodynamic points X(15) and X(16) also lie on the quartic. But ın these cases such triangles are equilateral and have no Euler lines. (Degenerate case).

    ReplyDelete

1988. Circumcenters On Euler Line

  Let ABC be a triangle with P, Q are two points on Euler line of ABC. A',B',C' are inverse images of A,B,C through circle diame...