Saturday, May 14, 2022

1853. A Construction For X(5497) = 5th HATZIPOLAKIS-MONTESDEOCA POINT

 Let I=X(1) incenter of ABC. Circle BIC ıntersects the AC and AB at Ab, Ac. Define Ba,Bc, Ca,Cb cyclically.

Inversion of the line BC in the circle (IBcCb) is a cirlcle GammaA. Define GammB, GammaC cyclically.

*  GammaA, GammB, GammaC are concurrent circles. Concurrency point is X(5497) =  5th HATZIPOLAKIS-MONTESDEOCA POINT.

1 comment:

  1. Instead of I if we use S=X(15)-1st isodynamic point GammaA, GammaB and GammaC concur at X(5612).

    ReplyDelete

1987. Circumcenter On Euler Line

 Let H=X(4)-Orthocenter of ABC. A 1 B 1 C 1 cevian triangle of H. B1 A , C1 A are reflections of B1, C1 on A. L A , line through B1 A , C1...