Saturday, May 14, 2022

1853. A Construction For X(5497) = 5th HATZIPOLAKIS-MONTESDEOCA POINT

 Let I=X(1) incenter of ABC. Circle BIC ıntersects the AC and AB at Ab, Ac. Define Ba,Bc, Ca,Cb cyclically.

Inversion of the line BC in the circle (IBcCb) is a cirlcle GammaA. Define GammB, GammaC cyclically.

*  GammaA, GammB, GammaC are concurrent circles. Concurrency point is X(5497) =  5th HATZIPOLAKIS-MONTESDEOCA POINT.

1 comment:

  1. Instead of I if we use S=X(15)-1st isodynamic point GammaA, GammaB and GammaC concur at X(5612).

    ReplyDelete

1988. Circumcenters On Euler Line

  Let ABC be a triangle with P, Q are two points on Euler line of ABC. A',B',C' are inverse images of A,B,C through circle diame...